30 research outputs found

    In-situ instrumentation of cells and power line communication data acquisition towards smart cell development

    Get PDF
    The internal core temperature of cells is required to create accurate cell models and understand cell performance within a module. Pack cooling concepts often trade off temperature uniformity, vs cost/weight and complexity. Poor thermal management systems can lead to accelerated cell degradation, and unbalanced ageing. To provide core temperature an internal array of 7 thermistors was constructed; these in conjunction with cell current, via bus bar mounted sensors, and voltage sensor measurements, we have developed instrumented cells. These cells are also equipped with power line communication (PLC) circuitry, forming smart cells. We report upon data from these miniature sensors during cell cycling, demonstrating successful operation of the PLC system (zero errors compared to a reference wired connection) during typical cell cycling (C/2 discharge, C/3 charge) and the application of automotive drive cycle, providing a transient current test profile. Temperature variation within the cell of approximately 1.2 °C gradients, and variation of >2.8 °C during just 30 min of 2C discharging demonstrate the need for internal sensing and monitoring throughout the lifetime of a cell. Our cycling experimental data, along with thorough cell performance tracking, where typically <0.5% degradation was found following instrumentation process, demonstrate the success of our novel prototype smart cells

    Development of an in-vehicle power line communication network with in-situ instrumented smart cells

    Get PDF
    Instrumented cells, equipped with miniature sensors, are proposed to aid the next stage of electrification in the automotive and aerospace industries. To optimize the energy density available within a lithium ion (li-ion) pack we demonstrate how a power line communication (PLC) network can be formed at an individual cell level. This reduces the need for complex communication cables within a vehicle wiring loom. Here we show a unique prototype smart cell (instrumented cell equipped with interface circuitry and processing capability) can be connected via a PLC network, to enable monitoring of vital parameters (temperature, voltage, current), regardless of cell state of charge (2.5 V to 4.2 V DC operating voltage). In this proof-of-concept study, we show the reliable system (0 errors detected over ∼24 hr experiment, acquired data (logged at 10 Hz) from cells (in a parallel configuration), and comparative data for cell internal and external temperature was recorded. During a prolonged discharge (1C, 5A discharge) a peak core temperature >3 °C hotter than surface temperature was observed, highlighting the need to understand cell operation in cooling system design

    Battery cell temperature sensing towards smart sodium-ion cells for energy storage applications

    Get PDF
    Battery cell instrumentation (e.g., temperature, voltage and current sensing) is vital to understand performance and to develop/contrast different cell designs and chemistries. Sodiumion batteries (NIBs) are emerging as an alternative solution to lithium-ion (LIB) technology, particularly in the field of grid energy storage. The relative abundancy of sodium (Na) and superior charge/discharge capability, fuel the development effort to match the desirable energy density properties of LIBs. Internal temperature sensing is of particular value during cell development, offering insights into hot spots and manufacturing defects, in-advance of detection via voltage or surface temperature measurement. We developed novel thermistor arrays (7x miniature sensors) inserted into the core of a 21700 format LIB via flexible PCBs. These arrays were protected using a covering tube, and successfully provided temperature measurements throughout an ageing experiment consisting of 100 cycles (1C charge, 0.3C discharge). For the first time, we report on our performance tests prior to this ageing study (capacity, internal resistance) to highlight the instrumented cells show comparable degradation (∼5 %) to an unmodified cell. We extend this study by verifying that our scalable low-cost solution to sensor protection can be migrated to NIBs. The resilience of the protected PCBs to electrolyte was tested via a longer-term test (preliminary results from a 90-day study are reported here) submerged within the solution. The findings offer a promising outlook to lower-cost cell instrumentation and will provide a tool to optimize these novel cell chemistries

    Distributed internal thermal monitoring of lithium ion batteries with fibre sensors

    Get PDF
    Real-time monitoring of the thermal characteristics of a lithium ion battery under electrical excitation, is a key requirement that underpins the safe operation of the battery; its reliability and life. Further, it facilitates the design of many supporting elements of the battery system, including the thermal management strategy and the algorithms that comprise the battery management system. The novelty of this study is advanced distributed thermal monitoring from external to embedded measurement for future smart battery and management. Rayleigh scattering based optical fibre sensors are known to be robust and able to operate when immersed in electrolyte, they have a small physical size and are able to provide a measurement of temperature with a spatial resolution of circa 2.6 mm. The spatial distribution of the temperature profile, arising from the complexity and variations within the cell is investigated. The results show that the peak temperature between the cell core and surface, along the cell length can be as high as 9.7 °C for 1C discharge. This paper provides a detailed explanation of the cell modification method, instrumentation process and the fundamental principles of in-cell optical measurement. Results are presented and discussed within the context of enhanced battery thermal management and improved system safety that are applicable to the application of lithium ion batteries across a number of domains including automotive and aerospace

    Global thermal image of cylindrical 21700 Li-ion batteries with distributed optical fibre sensor

    Get PDF
    The ability to monitor the thermal behaviour of lithium-ion batteries (LIB) is an essential pre-requisite to optimise performance and ensure safe operation. However, traditional point measurement (thermocouples) faces challenges in accurately characterising LIB behaviour and notably in defining the hotspot and the magnitude and direction of the thermal gradient. To address these issues, an optical-frequency-domain-reflectometer (OFDR) based distributed-optical-fibre-sensor has been employed to quantify the heat generation within a cylindrical 21700 LIB. A 3 mm spatial resolution within the optical sensor is realised. The optical fibre has been wound around the cell surface for over 1300 unique measurement locations; distributed around the circumference and axially along the LIB. Distributed measurements show the maximum thermal difference can reach 8.37 °C during a 1.5C discharge, while the point-like sensors have 4.31 °C thermal difference. While a temperature gradient along the cell axial length is well understood, for the first time, this research quantifies the temperature variations along the circumference of the cell. The global thermal image highlights heat generation is accumulated around the positive current tab, implying that a fundamental knowledge of internal LIB structure is required when defining sensor placement within the traditional characterisation experiments and deployment within the battery management system (BMS)

    A compatibility study of protective coatings for temperature sensor integration into sodium-ion battery cells

    Get PDF
    Instrumented battery cells (i.e. those containing sensors) and smart cells (with integrated control and communication circuitry) are essential for the development of the next-generation battery technologies, such as Sodium-ion Batteries (SIBs). The mapping and monitoring of parameters, for example the quantification of temperature gradients, helps improve cell designs and optimise management systems. Integrated sensors must be protected against the harsh cell electrolytic environment. State-of-the-art coatings include the use of Parylene polymer (our reference case). We applied three new types of coatings (acrylic, polyurethane and epoxy based) to thermistor arrays mounted on flexible printed circuit board (PCBs). We systematically analyse the coatings: (i) PCB submersion within electrolyte vials (8 weeks); (ii) analysis of sample inserted into coin cell; (iii) analysis of sensor and cell performance data for 1Ah pouch SIBs. Sodium-based liquid electrolyte was selected, consisting of a 1 M solution of sodium hexafluorophosphate (NaPF6) dissolved in a mixture of ethylene carbonate and diethylene carbonate in a ratio of 3:7 (v/v%). Our novel experiments revealed that the epoxy based coated sensors offered reliable temperature measurements; superior performance observed compared to the Parylene sensors (erroneous results from one sample were reported, under 5 d submersed in electrolyte). Nuclear magnetic resonance (NMR) spectroscopy revealed in the case of most coatings tested, formation of additional species occurred during exposure to the different coatings applied to the PCBs. The epoxy-based coating demonstrated resilience to the electrolytic-environment, as well as minimal effect on cell performance (capacity degradation compared to unmodified-reference, within 2% for the coin cell, and within 3.4% for pouch cell). The unique methodology detailed in this work allows sensor coatings to be trialled in a realistic and repeatable cell environment. This study demonstrated for the first time that this epoxy-based coating enables scalable, affordable, and resilient sensors to be integrated towards next-generation Smart SIBs

    Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer

    Get PDF
    Colon tumors from four independent mouse models and 100 human colorectal cancers all exhibited striking recapitulation of embryonic colon gene expression from embryonic days 13.5-18.5

    A single cell atlas of frozen shoulder capsule identifies features associated with inflammatory fibrosis resolution

    Get PDF
    Frozen shoulder is a spontaneously self-resolving chronic inflammatory fibrotic human disease, which distinguishes the condition from most fibrotic diseases that are progressive and irreversible. Using single-cell analysis, we identify pro-inflammatory MERTKlowCD48+ macrophages and MERTK + LYVE1 + MRC1+ macrophages enriched for negative regulators of inflammation which co-exist in frozen shoulder capsule tissues. Micro-cultures of patient-derived cells identify integrin-mediated cell-matrix interactions between MERTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts, suggesting that matrix remodelling plays a role in frozen shoulder resolution. Cross-tissue analysis reveals a shared gene expression cassette between shoulder capsule MERTK+ macrophages and a respective population enriched in synovial tissues of rheumatoid arthritis patients in disease remission, supporting the concept that MERTK+ macrophages mediate resolution of inflammation and fibrosis. Single-cell transcriptomic profiling and spatial analysis of human foetal shoulder tissues identify MERTK + LYVE1 + MRC1+ macrophages and DKK3+ and POSTN+ fibroblast populations analogous to those in frozen shoulder, suggesting that the template to resolve fibrosis is established during shoulder development. Crosstalk between MerTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts could facilitate resolution of frozen shoulder, providing a basis for potential therapeutic resolution of persistent fibrotic diseases

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P &lt; 0.001) and PARP inhibitor therapy (P &lt; 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P &lt; 0.018) and WEE1 inhibitor (P &lt; 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P &lt; 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy

    New ionic and mixed conducting materials for fuel cell applications

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore